- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cohen, Matthew_J (1)
-
Flint, Madison (1)
-
Martin, Jonathan_B (1)
-
Reisinger, Alexander_J (1)
-
Salinas, Tatiana (1)
-
Shin, Yuseung (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Nutrient impacts on productivity in stream ecosystems can be obscured by light limitation imposed by canopy cover and water turbidity, thereby creating uncertainties in linking nutrient and productivity regimes. Evaluations of nutrient limitations are often based on a response ratio (RR) quantifying productivity stimulation above ambient levels given augmented nutrient supply. This metric neglects the primacy of light effects on productivity. We propose an alternative approach to quantify nutrient limitations using a “decline ratio” (DR), which quantifies the productivity decline from the maximum established by light availability. The DR treats light as the first‐order control and nutrient depletion as a disturbance causing productivity decline, allowing separation of nutrient and light influences. We used DR to assess nutrient diffusing substrate (NDS) experiments with three nutrients (nitrogen [N], phosphorus [P], iron [Fe]) from five Greenland streams during summer, where light is not limited due to the lack of canopy and low turbidity. We tested two hypotheses: (a) productivity maximum (i.e., highest chlorophyll‐aamong NDS treatments) is controlled by light and (b) DR depends on both light and nutrients. The productivity maximum was strongly predicted by light (R2 = 0.60). The productivity decline induced by N limitation (i.e., DRN) was best explained by light availability when parameterized with either dissolved inorganic nitrogen concentration (R2 = 0.79) or N:Fe ratio (R2 = 0.87). These predictions outperformed predictions of RR for which light was not a significant factor. Reversing the perspective on nutrient limitation from “stimulation above ambient” to “decline below maximum” provides insights into both light and nutrient impacts on stream productivity.more » « less
An official website of the United States government
